Another reason is that despite both players having achieved the career Grand Slam, Nadal's Grand Slam singles record looks a bit more uneven than Federer's as it's more skewed towards the tournament he's won the most, the French Open. Ten out of his sixteen titles were won here, compared with eight out of Federer's twenty being at Wimbledon. So it occurred to me to wonder: what if we built a list of Grand Slam winners ordered by how many singles titles they'd won that were not at their favourite event? The idea is that this would be some crude measure of their versatility across different tournaments, different surfaces, different times of year, all that stuff. So here's the starting list (shamelessly stolen from Wikipedia): everyone who's won more than five Grand Slam men's singles titles.
Player | Total | Australian Open | French Open | Wimbledon | US Open |
---|---|---|---|---|---|
Roger Federer | 20 | 6 | 1 | 8 | 5 |
Rafael Nadal | 16 | 1 | 10 | 2 | 3 |
Pete Sampras | 14 | 2 | 0 | 7 | 5 |
Roy Emerson | 12 | 6 | 2 | 2 | 2 |
Novak Djokovic | 12 | 6 | 1 | 3 | 2 |
Rod Laver | 11 | 3 | 2 | 4 | 2 |
Björn Borg | 11 | 0 | 6 | 5 | 0 |
Bill Tilden | 10 | 0 | 0 | 3 | 7 |
Fred Perry | 8 | 1 | 1 | 3 | 3 |
Ken Rosewall | 8 | 4 | 2 | 0 | 2 |
Jimmy Connors | 8 | 1 | 0 | 2 | 5 |
Ivan Lendl | 8 | 2 | 3 | 0 | 3 |
Andre Agassi | 8 | 4 | 1 | 1 | 2 |
Richard Sears | 7 | 0 | 0 | 0 | 7 |
William Renshaw | 7 | 0 | 0 | 7 | 0 |
William Larned | 7 | 0 | 0 | 0 | 7 |
René Lacoste | 7 | 0 | 3 | 2 | 2 |
Henri Cochet | 7 | 0 | 4 | 2 | 1 |
John Newcombe | 7 | 2 | 0 | 3 | 2 |
John McEnroe | 7 | 0 | 0 | 3 | 4 |
Mats Wilander | 7 | 3 | 3 | 0 | 1 |
Laurence Doherty | 6 | 0 | 0 | 5 | 1 |
Tony Wilding | 6 | 2 | 0 | 4 | 0 |
Jack Crawford | 6 | 4 | 1 | 1 | 0 |
Don Budge | 6 | 1 | 1 | 2 | 2 |
Stefan Edberg | 6 | 2 | 0 | 2 | 2 |
Boris Becker | 6 | 2 | 0 | 3 | 1 |
Frank Sedgman | 5 | 2 | 0 | 1 | 2 |
Tony Trabert | 5 | 0 | 2 | 1 | 2 |
And here's the re-ordered list if you exclude the one they won the most:
Player | Favourite tournament | Number of titles | Corrected number |
---|---|---|---|
Roger Federer | Wimbledon | 8 | 12 |
Pete Sampras | Wimbledon | 7 | 7 |
Rod Laver | Wimbledon | 4 | 7 |
Rafael Nadal | French Open | 10 | 6 |
Novak Djokovic | Australian Open | 6 | 6 |
Roy Emerson | Australian Open | 6 | 6 |
Björn Borg | French Open | 6 | 5 |
Fred Perry | Wim / US | 3 | 5 |
Ivan Lendl | French / US | 3 | 5 |
Andre Agassi | Australian Open | 4 | 4 |
Ken Rosewall | Australian Open | 4 | 4 |
John Newcombe | Wimbledon | 3 | 4 |
Mats Wilander | Aus / French | 3 | 4 |
René Lacoste | French Open | 3 | 4 |
Don Budge | Wim / US | 2 | 4 |
Stefan Edberg | Aus / Wim / US | 2 | 4 |
Bill Tilden | US Open | 7 | 3 |
Jimmy Connors | US Open | 5 | 3 |
Henri Cochet | French Open | 4 | 3 |
John McEnroe | US Open | 4 | 3 |
Boris Becker | Wimbldeon | 3 | 3 |
Frank Sedgman | Aus / US | 2 | 3 |
Tony Trabert | French / US | 2 | 3 |
Jack Crawford | Australian Open | 4 | 2 |
Tony Wilding | Wimbledon | 4 | 2 |
Laurence Doherty | Wimbledon | 5 | 1 |
Richard Sears | US Open | 7 | 0 |
William Larned | US Open | 7 | 0 |
William Renshaw | Wimbledon | 7 | 0 |
Obviously this is very satisfying to me as it places Federer head and shoulders above the others. It also shunts a lot of the oldsters down to the bottom of the list as back in the day travelling from your home country to other parts of the world was a ridiculously time-consuming undertaking and so a lot of people didn't bother. So Bill Tilden drops from 10 to 3 and the serious one-tournament wonders like Sears, Larned, and Renshaw drop to zero. It's harsh, but fair. Let's try another formula - multiply everything together! Hang on, though, anyone who hasn't done the career Grand Slam will get a product of zero; we'd better add one to everything first, just to be fair. So someone who's won all the Grand Slams once will get a Grand Slam Factor or GSF of 16, whereas someone who's won one of them four times will end up with a GSF of 5. That sounds about right; consistency and versatility is what we're trying to reward here.
Player | Total | Aus | French | Wim | US | GSF |
---|---|---|---|---|---|---|
Roger Federer | 20 | 6 | 1 | 8 | 5 | 756 |
Rafael Nadal | 16 | 1 | 10 | 2 | 3 | 264 |
Roy Emerson | 12 | 6 | 2 | 2 | 2 | 189 |
Rod Laver | 11 | 3 | 2 | 4 | 2 | 180 |
Novak Djokovic | 12 | 6 | 1 | 3 | 2 | 168 |
Pete Sampras | 14 | 2 | 0 | 7 | 5 | 144 |
Fred Perry | 8 | 1 | 1 | 3 | 3 | 64 |
Andre Agassi | 8 | 4 | 1 | 1 | 2 | 60 |
Ivan Lendl | 8 | 2 | 3 | 0 | 3 | 48 |
Ken Rosewall | 8 | 4 | 2 | 0 | 2 | 45 |
Björn Borg | 11 | 0 | 6 | 5 | 0 | 42 |
Jimmy Connors | 8 | 1 | 0 | 2 | 5 | 36 |
René Lacoste | 7 | 0 | 3 | 2 | 2 | 36 |
John Newcombe | 7 | 2 | 0 | 3 | 2 | 36 |
Don Budge | 6 | 1 | 1 | 2 | 2 | 36 |
Bill Tilden | 10 | 0 | 0 | 3 | 7 | 32 |
Mats Wilander | 7 | 3 | 3 | 0 | 1 | 32 |
Henri Cochet | 7 | 0 | 4 | 2 | 1 | 30 |
Stefan Edberg | 6 | 2 | 0 | 2 | 2 | 27 |
Boris Becker | 6 | 2 | 0 | 3 | 1 | 24 |
John McEnroe | 7 | 0 | 0 | 3 | 4 | 20 |
Jack Crawford | 6 | 4 | 1 | 1 | 0 | 20 |
Frank Sedgman | 5 | 2 | 0 | 1 | 2 | 18 |
Tony Trabert | 5 | 0 | 2 | 1 | 2 | 18 |
Tony Wilding | 6 | 2 | 0 | 4 | 0 | 15 |
Laurence Doherty | 6 | 0 | 0 | 5 | 1 | 12 |
Richard Sears | 7 | 0 | 0 | 0 | 7 | 8 |
William Renshaw | 7 | 0 | 0 | 7 | 0 | 8 |
William Larned | 7 | 0 | 0 | 0 | 7 | 8 |
The biggest casualties are the two-Slam wonders Borg and Tilden, while the consistent three-Slam guys like Rosewall and Lendl get a leg-up. Once again the oldsters get shunted to the bottom of the list, but, I mean, come on, guys, make an effort - if you can't be bothered to live in the right era of history with high-speed travel and communications, not to mention sports psychologists and Lucozade, then I've no sympathy for you.
That said, I expect if you come up with some suitably contorted formula you can probably work your guy to the top of the list. There's a challenge for all you Laurence Doherty fans out there.
No comments:
Post a Comment